Propionate oxidation

Recently, a specific peptide inhibitor for ATGL was isolated from white blood cells, specifically mononuclear cells. This peptide was originally identifed as being involved in the regulation of the G 0 to G 1 transition of the cell cycle . This peptide was, therefore, called G0G1 switch protein 2 (G0S2). The protein is found in numerous tissues, with highest concentrations in adipose tissue and liver. In adipose tissue G0S2 expression is very low during fasting but increases after feeding. Conversely, fasting or PPARα-agonists increase hepatic G0S2 expression. The protein has been shown to localize to LDs, cytoplasm, ER, and mitochondria. These different subcellular localizations likely relate to multiple functions for G0S2 in regulating lipolysis, the cell cycle , and, possibly, apoptosis via its ability to interact with the mitochondrial antiapoptotic factor Bcl-2. With respect to ATGL regulation, the binding of the enzyme to LDs and subsequent is dependent on a physical interaction between the N-terminal region of G0S2 and the patatin domain of ATGL.

Metabolism of propanoate begins with its conversion to propionyl coenzyme A (propionyl-CoA), the usual first step in the metabolism of carboxylic acids. Since propanoic acid has three carbons, propionyl-CoA can directly enter neither beta oxidation nor the citric acid cycles. In most vertebrates, propionyl-CoA is carboxylated to D-methylmalonyl-CoA, which is isomerised to L-methylmalonyl-CoA. A vitamin B 12 -dependent enzyme catalyzes rearrangement of L-methylmalonyl-CoA to succinyl-CoA, which is an intermediate of the citric acid cycle and can be readily incorporated there.

Propionate oxidation

propionate oxidation


propionate oxidationpropionate oxidationpropionate oxidationpropionate oxidationpropionate oxidation